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A transformation for non-homentropic flows, with 
an application to large-amplitude motion 

in the atmosphere 
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A transformation has been found which reduces steady non-homentropic flows 
of a compressible fluid to homentropic flows, provided diffusive and gravity 
effects are negligible. With this transformation, the equation governing steady 
two-dimensional flows of a compressible fluid with variable entropy in a gravi- 
tational field is derived, which is then applied to the study of atmospheric waves 
in the lee of mountains. The corresponding equation governing swirling axisym- 
metric flows is also given. 

1. Introduction 
It is well known that the flow of gas behind a curved shock is non-homentropic. 

In  the atmosphere, waves are sometimes formed in the lee of mountains as a 
result of the non-homentropy of air and of the action of gravity. But the equa- 
tions governing non-homentropic flows are so complicated that no non-trivial 
exact solution exists. Therefore in existing literature on the formation of lee 
waves, the theory has always been based on perturbation methods, and is thus 
only valid if the amplitude of wave motion (i.e. the vertical displacement) is small. 

In  this paper a transformation will be presented which will render unnecessary 
the consideration of non-homentropy in steady flows of ideal gases, provided 
the effects of viscosity and of gravity are neglected, in the sense that every steady 
non-homentropic flow can be reduced thereby to a steady homentropic flow. 
Gravity effects can certainly be neglected in the aerodynamics of aircraft or 
flying objects, though it is of primary importance in the study of waves in the 
atmosphere. Viscous effects can, as usual, be neglected outside of the boundary 
layer, and are certainly of secondary importance in atmospheric flows. Thus the 
transformation to be presented here is not without practical value. 

In  the study of lee waves in the atmosphere, the presence of gravity, which 
is now of paramount importance, prevents the above-mentioned transformation 
from absorbing the effects of non-homentropy altogether. Nevertheless, the use 
of this transformation leads to the derivation of a much simplified equation for 
steady two-dimensional flows, which, for an atmosphere slightly stratified in 
entropy and in specific energy, possesses four essentially different classes of 

* At Department of Applied Mathematics and Theoretical Physics, University of 
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A transformation for non-hornentropic flows 69 

solutions, provided the Mach number is everywhere small, so that the effect of 
dynamic compressibility on density variation can be neglected. (In the first 
10 or 16 km of the atmosphere, where lee waves can conceivably be expected to 
occur, the Mach number of atmospheric flows is certainly everywhere small.) 
The solutions are exact in the sense that the displacements are not assumed to 
be small, but can have any arbitrary values of the same magnitude as the scale 
of the motion. 

An equation governing steady axisymmetric flows with swirl has also been 
obtained, which may be helpful for the study of the Kirsch-tube phenomenon and 
of tornadoes. 

2. The transformation 
To bring out the full significance for ordinary aerodynamics of the transforma- 

tion mentioned in the Introduction, body forces will be ignored for the time being. 
The equations of motion for steady flows are then 

in which ui is the velocity component in the direction of the Cartesian co- 
ordinate xi (i = 1,2,  3), p is the density, p is the pressure, and the summation 
convention has been adopted. The equation of continuity is, exactly, 

aui 1 ap 
ax, 3 ax, 
-+-u.-  = 0. 

If the flow is homentropic, and the fluid is a perfect gas, 

p / p  = constant, (3) 

in which y is the ratio of the specific heat* at constant pressure (c,) to that at  
constant volume (cv),  and the flow is governed by equations (1) to (3). If the flow 
is not homentropic but diffusion is neglected, the entropy along a path line is con- 
stant. For steady flows this means that 

which replaces equation (3), and states the constancy of entropy along a stream- 
line in steady flows. 

One of the great difficulties encountered in dealing with non-homentropic flows 
is that, since the gas is no longer barotropic (which is another way of saying that 
a single relationship between p and p does not exist), p cannot be absorbed into 
the pressure term in ( l ) ,  and the motion, even started from rest, will not continue 
to be irrotational. The system consisting of equations (l), (2), and (4) is so com- 
plicated that at present no non-trivial solutions exist. However, the situation 
is not as bad as it appears at first sight, as the transformation now to be given will 
show. 

* Both cg and c, are assumed to be constant. 
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In  virtue of (4) , 

in which P(h) is any arbitrary function of A, defined by 

with po denoting a reference pressure and po a reference density. Since the en- 
tropy S is connected with p ,  p, and c, by 

(7) plpy  = constant x eslcv, 

h = constant x e-sb, (8) 

and is to be determined for each streamline from the upstream conditions, by 
virtue of its constancy along a streamline in steady flows, as stated in (5). With 
the transformation 

the quantity h is connected with the entropy by 

u; = .jhui, p' = p/h, and p' = p ,  (9) 

equations (1) and (2) become, in virtue of (5 ) ,  

and 

Furthermore, the last two of equations (9) and equation (6) can be combined to 
give 

Now equations (lo), ( l l) ,  and (12) are identical in form to (l), (2), and (3), and 
hence govern homentropic flows in terms of the primed quantities. But this 
means that to any solution of equations (10) to (12) representing a homentropic 
flow in terms of u;, p', and p', there corresponds a non-homentropic flow in 
terms of ui, p, and p, which are obtained from equations (9), and vice versa. 
Consideration of boundary conditions does not affect this conclusion. For con- 
venience the flow in terms of the primed quantities will be called the associated 
flow. 

The associated flow may not be irrotational. But if it originates from a big 
reservoir, where the fluid is at rest and therefore possesses no vorticity, irro- 
tationality (in theui-field) will persist downstream. This can be seen by eliminating 
p' from (10) by cross-differentiation, producing 

in which f i  is the i t h  component of the vorticity in the +field. Equation (13) 
clearly indicates the persistence of irrotationality (or of the vanishing of 5:). 
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If 6; = 0, integration of equations (10) in the usual way produces (with q’ aa the 
speed in the associated flow) 

which is valid for the whole field of flow. This equation can also be written 
pllr 

+q2+-- 7 P - - - q:&= = constant x - , 
Y-1P P 

in which Q is the speed of the actual flow. If 6; $. 0, 

in which f (S) is an arbitrary function of the entropy S. 

not neglected the complete equation is (with z measured vertically upward) 
Equation (14) is simply the ordinary Bernoulli equation. In  fact, if gravity is 

&I2 + gz + y- - lp  =f(S), (17) 

which is well known. 
Since the transformation presented in this section may suggest a similarity 

in its underlying idea with Crocco’s stream function, it is desirable to point out 
the essential differences between the two inventions. Crocco dealt with the 
homenergic (constant specific energy, or constant f(8) in (17)) but non-homen- 
tropic flows behind a shock, and, utilizing the constancy of entropy along a 
streamline in steady flows, obtained the equation of continuity for two-dimen- 
sional flow” (in the usual notation) 

(18) 
a 2  a 

aY 
& [u(qm,, - q2)1/(7-1)] + - [v(q&,, - q2)”‘7-1)] = 0,  

which permits the use of a stream function $ (Crocco’s stream function), in 
terms of which the velocity components can be expressed 

(19) u = (qk,, - q2)-1/(Y-1) - all. v = - (42 - q2)--1/(Y-l) - a$ . 
’ ax 

- q 2 ) l K y - l )  

Close examination of the factor 

shows that it is really just the density p multiplied by a function of the entropy. 
To this extent there is some similarity between the piesent transformation and 
Crocco’s invention. But the similarity stops here. The important differences are: 
(a) Crocco’s development is only for homenergic flows, whereas the present trans- 
formation deals with non-homenergic and non-homentropic flows; (b )  Crocco’s 
development is only for two-dimensional or axisymmetric flows, whereas the 
present transformation deals with general three-dimensional flows; (c) Crocco 
invented a new stream function but left the velocity unchanged, hence did not 
arrive at the transformation embodied in (9). 

* The development for axisymmetric flows is similar. 
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We shall now take stock and see what conclusions can be drawn from the 
transformation embodied in (9). As is evident, the associated flow has the same 
pattern as the actual flow. It (the associated flow) is irrotational if the actual 
flow originates from a large reservoir where the gas is at rest, or, more generally, 
if the associated flow is irrotational far upstream. Whether the associated flow 
is irrotational or not, the third of equations (9) ensures that the drag and lift 
on any body placed in the gas stream will be the same as that calculated from 
the associated flow. If far upstream the actual flow* is unidirectional, with con- 
stant velocity but variable entropy, the associated flow will be rotational, and 
there will in general be lift on a body placed in the stream. This is an example 
illustrating how entropy stratification upstream can give rise to lift on a body 
moving with constant velocity in a quiescent but stratified gas. 

The above conclusions, and indeed the transformation embodied in (9), are 
based on the conservation of entropy along each streamline. Therefore flows with 
shocks must be considered anew, if they are to be considered as a whole and not as 
a collection of separate regions. Looking at such flows in their entirety, we can 
draw some interesting conclusions in spite of the entropy change across the shock. 
Since three-dimensional shocks differ from two-dimensional ones only in com- 
plexity, not in principle, only two-dimensional shocks will be considered here. 
The pre-shock flow is assumed to be parallel to the z-axis, with velocity ul (which 
may vary with y), with the subscript 1 now referring to pre-shock flow and 2 to 
post-shock flow. The shock wave is in general curved and the post-shock flow 
in general non-parallel. With u and v denoting velocity components in the z- and 
y-directions, and /? denoting the local angle of inclination of the shock wave, 
continuity demands (Liepmann & Puckett 1947, p. 51) that along the shock wave 

plul sin /? = p2(u2 sin /? - u2 COB /3), (20) 

in which p is the density. The conservation of momentum normal to the shock 
wave demands that, along the shock wave, 

pl+p1utsin2,8 = p2+p2(~2sin$-v2cos,8)2, (21) 

in which p is the pressure. The conservation of momentum parallel to the shock 
wave demands 

(22) plu: sin /3 cos ,8 = p2(u2 sin /? - v2 cos p) (u2 cos /? + v2 sin /?), 

and the energy equation remains 

Equations (20) to (23) contain five unknowns: u2, v2, p2, p2, and p. The variation 
of /? from place to place along the shock wave can only be determined by the 
equations governing the flow before the shock, those governing post-shock flow, 
equations (20) to (23), and the conditions at the solid boundaries and at infinity, 
by a trial-and-error process. 

constant velocity in a quiescent but stratiiled gas. 
* The flow is the steady flow equivalent to the flow caused by e body moving with 
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Whereas the transformation embodied in (9) does not obviate this tedious 
process, it does throw some light on shock waves ahead of which the fluid is 
already non-homentropic. With h defined by (6) and determined for each stream- 
line (even after it pierces through the shock wave) by the upstream or pre-shock 
condition, we insist on making the transformation represented by (9), in spite of 
the abrupt increase of entropy along each streamline as it crosses the shock 
wave. The associated flow is parallel and homentropic upstream, and is irrota- 
tional if huq is constant throughout. Behind the shock even the associated flow 
is not homentropic, but is governed by the equations 

-+-+, u‘ - +v’-- p‘ = 0, 

(ui,+v’-) a a (-) pi = 0,  
a Y  P’Y 

2 : ; ( :x :y) 

because h is constant on each streamline by imposition. These equations, with 
the primes dropped, are identical with the equations governing post-shock flow. 
The transformation (9) achieves homentropy in the pre-shock region, but other- 
wise leaves the governing equations unchanged in form. At the shock wave, 
(20) to (23) are still valid if all the quantities (except, of course, p and y )  are 
primed. Thus, even when shock waves are present, to every flow with entropy 
stratification before the shock corresponds an associated flow of the same pattern 
for theentireJieZdofjow, with hornentropy (throughnot necessarily irrotationality) 
before the shock. The actual lift and drag on a body placed in the gas stream are 
the same as those calculated from the associated flow. 

Although gravity has been neglected in this section, equations (9) are still 
helpful when gravity is taken into account, because they simplify the governing 
equations a great deal, as will be shown in the following sections. 

3. Equation governing two-dimensional flows in a gravitational field 
If (XI, x3) and (ul, us) are now written as (x, z )  and (u, w) ,  the equations of motion 

for steady two-dimensional flows are, with the gravity included, 

aP p ( u-+w-  E ::)=-%, 

( E E) az 
aP p u--+w- = - - - g p ,  

in which z is measured in a direction opposite to that of the gravitational accelera- 
tion g. With the transformation embodied in (7), the equations of motion become 
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The equation of continuity a(pu) afpw) -+-= 
ax a Z  

now has the form 

which permits the use of the stream function y such that 

With 

the equations of motion can be written 

Multiplication of (27) by dx and (28) by dz and addition of the resulting equations 
produces 

f d v  = drl+ghdz = dH-gzdh. 
Pi 

But since H and h are functions of $' alone, 

or, from equation (25)  and the last of equations (26), 

which is the desired equation. The density pi has to be evaluated from the third 
of equations (26) ,  in which H'(V) and A($') are determined from upstream 
conditions. 

4. Swirling axisymmetric flows in a gravitational field 
Cylindrical co-ordinates ( r ,  8, z )  will be used. In  these co-ordinates, the velo- 

city components will be denoted by u, w, and w, respectively. The equations of 
motion for steady axisymmetric flows are, with viscosity neglected, 
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in which z is again measured in the direction opposite to that of the gravitational 
acceleration. The equation of continuity is 

a ( v 4  = 0. +- ar ax 

By the transformation indicated by equations (7), equations (31) to (33) become 

and the equation of continuity becomes 

Equation (37) permits the use of a stream function $' in terms of which the 
velocity components can be expressed : 

Equation (35) expresses the conservation of angular momentum for the same 
particle, because it can be written as 

Consequently rv' is a function of $' alone. For convenience, we take 

= f($'). (39) 

2 
With q'2 = u12+d2++ 'a ,  J' = 

equations (34) and (36) can be written, with the aid of (38) and (39) 

TI  a$' f($', - -- aJ' 

71 a? aJ '  
rp' ax ax 

rp' ar .13 ar ' 

- --=-- 
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Multiplication of (41) by -dr  and (42) by -dz and addition of the results gives 

7' 1 df dH' d h  _ _  +--, = 7 -92--,, 
rp' 2r2d$ d$ d$ 

or, with the aid of (38) and the last of equations (40), 

(43) 

(44) 

which is the equation governing swirling axisymmetric motion in a gravitational 
field. In  many engineering applications (such as to the Hirsch tube), the term 
involving g can be neglected. Again, p' is to be calculated from the equation 
involving H' in (40), in which the functions H'(g ' )  and A($') are again to be 
determined from upstream conditions. Equation (44) could serve as a starting 
point for the study of tornadoes. 

5. Lee waves of large amplitude 
The phenomenon of gravity waves in air (considered as a compressible fluid) 

in the lee of mountain ridges has been studied by Lyra, Queney, Corby, Scorer, 
and others, and recently by Crapper (1949). (For references, see Crapper's work.) 
Perturbation methods have been used by all of these authors, so that their results 
do not apply to large vertical displacements. Batchelor (1953) gave an equation 
governing homentropic flows in the atmosphere, obtained on the assumption of 
irrotationality (which is a consequence of homentropy if the motion has been 
started from rest) and small Mach number in the entire flow field. The effect 
of gravity is retained in Batchelor's equation, so that it applies to large vertical 
displacements under the assumptions stated. However, since wave motions 
in the atmosphere are essentially due to  non-homentropy or non-homenergy, 
Batchelor's equation cannot be applied to a study of lee waves. 

The exact equation governing steady two-dimensional non-homentropic flows 
is equation (30), which can be used to study lee waves. However, the equation is 
so very complicated that no solution can be obtained without some simplifying 
assumptions. With Batchelor, we shall assume that the Mach number is every- 
where small, so that, a fortiori, the variation of the square of the speed is small 
compared with the square of the sound speed. Therefore the density variation 
due to the variation of speed is negligible, and any change in the density along 
the same streamline is due to change of elevation alone. Since isentropy along a 
streamline is the most important assumption underlying the derivation of (29), 
it  might appear that the simplifying assumption on p (hence on p') implies that 
the pressure is a function of elevation alone for any streamline. Such an implica- 
tion must not be inferred from the assumption on the density, because the 
pressure must be calculated from the equation containing H' in (26), with the 
term included. Indeed, if the pressure were only dependent on z on any one 
streamline, scarcely any non-trivial motion would be possible. The situation is 
not unlike that encountered in the study of free-convection problems, in which 
the fluid is assumed incompressible as far as continuity and the inertia of the 
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fluid is concerned, but is considered to have a variable density as far as the 
important term representing body force is concerned. Another similar situation 
is encountered in the study of incompressible fluids. If entropy is assumed con- 
stant along a path line, surely there is some relation connecting the density to the 
pressure on such a line. But the assumption of constant density does not imply 
constant pressure, because the pressure can change a great deal for an infinitesi- 
mal change in the density of what is normally considered to be an incompressible 
fluid. In  the present case, the assumption concerning p' affects only the first 
term in (29) or the first two groups of terms in (30), and is an assumption concern- 
ing essentially the continuity equation only. The inertia effect of density change 
has been absorbed once and for all in the transformation represented by equation 
(9). Gravity force is exactly represented by gz(dh/d@')  and the force resulting 
from pressure gradient is represented bydH'ldyY in (29), with H' given by the full 
expression in (26). The factor in the last two terms of (30) appears from a 
common multiplication by that factor, and does not affect the physical reasoning 
given above. 

If the variation of H' or of h with yY is large, equation (30) is still too difficult 
to solve. Therefore we shall assume the variation of H' and h to be small. As 
far as the calculation of p' is concerned, we shall ignore the variation of H' and h 
altogether and justify the procedure by the same arguments as those presented 
in the last paragraph. For pl, then, calculation from the third of (26), with the 
term neglected and h equal to 1 (if the reference density and pressure are 
those at  some point in the atmosphere under discussion), yields 

or 

With (46), equation (30) becomes 

in which, as in (45) and (as), H' is considered to be a constant except in con- 
nexion with h(@'). It must be remembered that whatever assumptions have 
been made on p', H', and A, they do not limit the amplitude of the vertical dis- 
placement of the motion in any way, or the slope of the streamlines. Freedom 
from such limitations is the chief merit of the present theory. The functions 
A(?) and h(yY) are to be determined from upstream conditions. 

Equation (47) is exactly linear if 

d h  
w = a @ ' + b ,  h ( y Y ) = m v + n .  

Since @I can be changed by a constant, there are seven different cases: 

(1) a =I= 0, b = 0, m = n = 0,  
( 2 )  a + 0, b = 0, m = 0, n =+ 0, 
( 3 )  a + 0, b = 0, m =+ 0, n = 0, 
(4) a =+ 0,  b = 0, m =+ 0, n =+ 0,  

( 5 )  a = 0, b $. 0, m = n = 0, 
(6) a = 0, b + 0, m = 0, n =+ 0, 
( 7 )  a = 0,  b + 0, m + 0,  n = 0. 
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We have not included the cases in which a = b = 0, because they correspond 
to homentropic flows. If in addition m = n = 0, the flow is in fact irrotational. 
But if m =# 0, wave motion is possible. This wave motion is not due to non- 
homentropy because the entropy is constant for a = b = 0, but is due to non- 
homenergy . 

Since z can be changed by a constant, the seven cases can be reduced to four 
essentially different cases. Thus cases (3), (4), and (6) are not essentially different 
from cases (I), (2), and (5), respectively. The four essentially different cases, are 
therefore, (l), (2), (5), and (7). 

(48) 

in which d is a reference length which can be taken either to be the depth of the 
troposphere or the depth below some very stable layer, and $o is a reference 
stream function, the linear cases are represented by 

If 
y = 1cr'l$o, 6 = %Id, 7 = zld, 

in which a = H'/gd (50)  

is the ratio of the equivalent depth of the atmosphere, assumed completely 
homentropic (for defining this depth only), to the reference depth d. The value 
of a may vary over a range, but if d is taken to be lOkm (average depth for the 
troposphere) a representative value for a is 3.5. 

In  all the linear cases the solution can be put in the form 

in which both parts on the right-hand side satisfy (49). If we suppose that from 
7 = 1 (or x = d )  upwards the atmosphere is much more stable than the layer 
below, so that the vertical displacement at 7 = 1 is small compared with that 
prevailing in the layer 0 < 7 < 1 (see Yih 1960a), a rigid plane may be imagined 
to  be situated at 7 = 1. The boundary conditions for Y are then 

Y1(O) = 0, Yl(l) = E (a constant). (52) 

Solution of the differential equation (49), with Y1 replacing Y therein, together 
with (52) then yield a. Yl(?;r) corresponding to an upstream condition which 
makes (47) linear. Although the actual upstream condition may not give rise to 
the linearity of (47), suitable choices of the constants A ,  B, C ,  D, and E can pro- 
duce infinitely many upstream conditions one of which may approximate the 
actual upstream condition rather closely, while the linearity of (47) is maintained 
throughout. The method of approach is therefore an inverse one, as is often the 
case in classical aerodynamics. 

As to Y2, the boundary conditions are, with the gas flowing from 6 = -GO to 
6 = +a, 

Y2+0 as &=-a, ( 5 3 4  

(53 b) 

(534 

Y& 1) = 0, 
Y = Yl + Y2 = 0 on the lower boundary (ground). 
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No boundary condition is imposed at 5 = + 00, because waves may exist in the lee 
of a barrier, and when they do not exist the condition far downstream is auto- 
matically the same as that far upstream. The condition ( 5 3 a )  is imposed on the 
assumption that the existence of a barrier, the effect of which is represented by 
Y2, does not influence the condition far upstream. The (assumed) rigidity of 
the boundary at 7 = 1 demands (53b) .  The satisfaction of (53c) on the surface 
of a ground of given profile is difficult. But the inverse method given in another 
paper (Yih 1960b) can again be used. As described in that paper, the auxillary 
condition 

is imposed to guarantee good behaviour of the solution far downstream, where 
the ground is assumed level and where the lee-wave components contained in 
Yz do not die out exponentially. The streamline Y = 0 therefore consists of two 
branches: the line 7 = 0 and the surface of the ground. As in the case of lee- 
wave formation in an incompressible fluid (Yih 1960b), the amplitudes of the 
lee-wave components depend only on certain integral properties of the barrier, 
and not on its detailed shape. 

Although the calculation for the details of lee-waves governed by (49) involves 
the detailed calculations for the eigenfunctions, in case (7) at least, the number of 
lee-wave components can be predicted from the value of C without detailed 
calculations. Thus, the function Y, satisfies the equation (with A = D = 0 in 

( 5 3 4  Y z ( E , O )  = 0 

in which the primes indicate ordinary differentiation. The other part of the solu- 
tion consists of terms of the form 

in which k may be imaginary, and f satisfies the equation 

With 

equation (54) becomes 

5 = Y L 1  (a: - 7)Y / (Y- l ) ,  

Y 

The interval 0 < y < 1 is now transformed to 

Let 

(541 

(55)  

(57) 

By equating k to zero and computing the values for C which will enable f to 
satisfy the boundary conditions corresponding to (53b)  and ( 5 3 4 ,  i.e. 

f(0) = 0, f(1) = 0, 
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we have C,= - (  nn/l)2. 

If (nn/Z)2 < - C < { [ (n  + 1 )  n]/Z}2, 

there are n non-negative eigenvalues for k2, and hence n lee-wave components. 

This work has been done during the tenure of a Senior Post-doctoral Fellow- 
ship granted by the National Science Foundation. 
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